


0

1

2

3

4

5

6

7

7.1

7.2

7.3

8

8.1

8.2

9

10

11

12

Table	of	Contents
Introduction

Go	Makes	Things	Simple

The	net/http	package

Creating	a	Basic	Web	App

Deployment

URL	Routing

Middleware

Rendering

JSON

HTML	Templates

Using	The	render	package

Testing

Unit	Testing

End	to	End	Testing

Controllers

Databases

Tips	and	Tricks

Moving	Forward

Building	Web	Apps	with	Go

2



Introduction
Welcome	to	Building	Web	Apps	with	Go!	If	you	are	reading	this	then	you	have	just	started
your	journey	from	noob	to	pro.	No	seriously,	web	programming	in	Go	is	so	fun	and	easy	that
you	won't	even	notice	how	much	information	you	are	learning	along	the	way!

Keep	in	mind	that	there	are	still	portions	of	this	book	that	are	incomplete	and	need	some
love.	The	beauty	of	open	source	publishing	is	that	I	can	give	you	an	incomplete	book	and	it
is	still	of	value	to	you.

Before	we	get	into	all	the	nitty	gritty	details,	let's	start	with	some	ground	rules:

Prerequisites
To	keep	this	tutorial	small	and	focused,	I'm	assuming	that	you	are	prepared	in	the	following
ways:

1.	 You	have	installed	the	Go	Programming	Language.
2.	 You	have	setup	a		GOPATH		by	following	the	How	to	Write	Go	Code	tutorial.
3.	 You	are	somewhat	familiar	with	the	basics	of	Go.	(The	Go	Tour	is	a	pretty	good	place	to

start)
4.	 You	have	installed	all	the	required	packages
5.	 You	have	installed	the	Heroku	Toolbelt
6.	 You	have	a	Heroku	account

Required	Packages
For	the	most	part	we	will	be	using	the	built	in	packages	from	the	standard	library	to	build	out
our	web	apps.	Certain	lessons	such	as	Databases,	Middleware	and	URL	Routing	will	require
a	third	party	package.	Here	is	a	list	of	all	the	go	packages	you	will	need	to	install	before
starting:

Building	Web	Apps	with	Go

3Introduction

https://golang.org
https://golang.org/doc/code.html#Organization
http://tour.golang.org
https://toolbelt.heroku.com/
https://id.heroku.com/signup


Name Import	Path Description

httprouter github.com/julienschmidt/httprouter A	high	performance	HTTP	request
router	that	scales	well

Negroni github.com/codegangsta/negroni Idiomatic	HTTP	Middleware

Black
Friday github.com/russross/blackfriday a	markdown	processor

Render gopkg.in/unrolled/render.v1 Easy	rendering	for	JSON,	XML,	and
HTML

SQLite3 github.com/mattn/go-sqlite3 sqlite3	driver	for	go

You	can	install	(or	update)	these	packages	by	running	the	following	command	in	your
console

go	get	-u	<import_path>

For	instance,	if	you	wish	to	install	Negroni,	the	following	command	would	be:

go	get	-u	github.com/codegangsta/negroni

Building	Web	Apps	with	Go

4Introduction

https://github.com/julienschmidt/httprouter
https://github.com/codegangsta/negroni
https://github.com/russross/blackfriday
https://github.com/unrolled/render/tree/v1
https://github.com/mattn/go-sqlite3


Go	Makes	Things	Simple
If	you	have	built	a	web	application	before,	you	surely	know	that	there	are	quite	a	lot	of
concepts	to	keep	in	your	head.	HTTP,	HTML,	CSS,	JSON,	databases,	sessions,	cookies,
forms,	middleware,	routing	and	controllers	are	just	a	few	among	the	many	things	your	web
app	may	need	to	interact	with.

While	each	one	of	these	things	can	be	important	in	the	building	of	your	web	applications,	not
every	one	of	them	is	important	for	any	given	app.	For	instance,	a	web	API	may	just	use
JSON	as	its	serialization	format,	thus	making	concepts	like	HTML	not	relevant	for	that
particular	web	app.

The	Go	Way
The	Go	community	understands	this	dilemma.	Rather	than	rely	on	large,	heavyweight
frameworks	that	try	to	cover	all	the	bases,	Go	programmers	pull	in	the	bare	necessities	to
get	the	job	done.	This	minimalist	approach	to	web	programming	may	be	off-putting	at	first,
but	the	result	of	this	effort	is	a	much	simpler	program	in	the	end.

Go	makes	things	simple,	it's	as	easy	as	that.	If	we	train	ourselves	to	align	with	the	"Go
way"	of	programming	for	the	web,	we	will	end	up	with	more	simple,	flexible,	and
maintainable	web	applications.

Power	in	Simplicity
As	we	go	through	the	exercises	in	this	book,	I	think	you	will	be	surprised	by	how	simple
some	of	these	programs	can	be	whilst	still	affording	a	bunch	of	functionality.

When	sitting	down	to	craft	your	own	web	applications	in	Go,	think	hard	about	the
components	and	concepts	that	your	app	will	be	focused	on,	and	use	just	those	pieces.	This
book	will	be	covering	a	wide	array	of	web	topics,	but	do	not	feel	obligated	to	use	them	all.	In
the	words	of	our	friend	Lonestar,	"Take	only	what	you	need	to	survive".

Building	Web	Apps	with	Go

5Go	Makes	Things	Simple



Building	Web	Apps	with	Go

6Go	Makes	Things	Simple



The	net/http	Package
You	have	probably	heard	that	Go	is	fantastic	for	building	web	applications	of	all	shapes	and
sizes.	This	is	partly	due	to	the	fantastic	work	that	has	been	put	into	making	the	standard
library	clean,	consistent,	and	easy	to	use.

Perhaps	one	of	the	most	important	packages	for	any	budding	Go	web	developer	is	the
	net/http		package.	This	package	allows	you	to	build	HTTP	servers	in	Go	with	its	powerful
compositional	constructs.	Before	we	start	coding,	let's	do	an	extremely	quick	overview	of
HTTP.

HTTP	Basics
When	we	talk	about	building	web	applications,	we	usually	mean	that	we	are	building	HTTP
servers.	HTTP	is	a	protocol	that	was	originally	designed	to	transport	HTML	documents	from
a	server	to	a	client	web	browser.	Today,	HTTP	is	used	to	transport	a	whole	lot	more	than
HTML.

The	important	thing	to	notice	in	this	diagram	is	the	two	points	of	interaction	between	the
Server	and	the	Browser.	The	Browser	makes	an	HTTP	request	with	some	information,	the
Server	then	processes	that	request	and	returns	a	Response.

Building	Web	Apps	with	Go

7The	net/http	package



This	pattern	of	request-response	is	one	of	the	key	focal	points	in	building	web	applications	in
Go.	In	fact,	the		net/http		package's	most	important	piece	is	the		http.Handler		Interface.

The	http.Handler	Interface
As	you	become	more	familiar	with	Go,	you	will	notice	how	much	of	an	impact	interfaces
make	in	the	design	of	your	programs.	The		net/http		interface	encapsulates	the	request-
response	pattern	in	one	method:

type	Handler	interface	{

				ServeHTTP(ResponseWriter,	*Request)

}

Implementors	of	this	interface	are	expected	to	inspect	and	process	data	coming	from	the
	http.Request		object	and	write	out	a	response	to	the		http.ResponseWriter		object.

The		http.ResponseWriter		interface	looks	like	this:

type	ResponseWriter	interface	{

				Header()	Header

				Write([]byte)	(int,	error)

				WriteHeader(int)

}

Composing	Web	Services
Because	much	of	the		net/http		package	is	built	off	of	well	defined	interface	types,	we	can
(and	are	expected	to)	build	our	web	applications	with	composition	in	mind.	Each
	http.Handler		implementation	can	be	thought	of	as	its	own	web	server.

Many	patterns	can	be	found	in	that	simple	but	powerful	assumption.	Throughout	this	book
we	will	cover	some	of	these	patterns	and	how	we	can	use	them	to	solve	real	world
problems.

Exercise:	1	Line	File	Server
Let's	solve	a	real	world	problem	in	1	line	of	code.

Building	Web	Apps	with	Go

8The	net/http	package



Most	of	the	time	people	just	need	to	serve	static	files.	Maybe	you	have	a	static	HTML
landing	page	and	just	want	to	serve	up	some	HTML,	images,	and	CSS	and	call	it	a	day.
Sure,	you	could	pull	in	Apache	or	Python's		SimpleHTTPServer	,	but	Apache	is	too	much	for
this	little	site	and		SimpleHTTPServer		is,	well,	too	slow.

We	will	begin	by	creating	a	new	project	in	our		GOPATH	.

cd	GOPATH/src

mkdir	fileserver	&&	cd	fileserver

Create	a	main.go	with	our	typical	go	boilerplate.

package	main

import	"net/http"

func	main()	{

}

All	we	need	to	import	is	the		net/http		package	for	this	to	work.	Remember	that	this	is	all
part	of	the	standard	library	in	Go.

Let's	write	our	fileserver	code:

http.ListenAndServe(":8080",	http.FileServer(http.Dir(".")))

The		http.ListenAndServe		function	is	used	to	start	the	server,	it	will	bind	to	the	address	we
gave	it	(	:8080	)	and	when	it	receives	an	HTTP	request,	it	will	hand	it	off	to	the
	http.Handler		that	we	supply	as	the	second	argument.	In	our	case	it	is	the	built-in
	http.FileServer	.

The		http.FileServer		function	builds	an		http.Handler		that	will	serve	an	entire	directory	of
files	and	figure	out	which	file	to	serve	based	on	the	request	path.	We	told	the	FileServer	to
serve	the	current	working	directory	with		http.Dir(".")	.

The	entire	program	looks	like	this:

package	main

import	"net/http"

func	main()	{

				http.ListenAndServe(":8080",	http.FileServer(http.Dir(".")))

}

Building	Web	Apps	with	Go

9The	net/http	package



Let's	build	and	run	our	fileserver	program:

go	build

./fileserver

If	we	visit		localhost:8080/main.go		we	should	see	the	contents	of	our	main.go	file	in	our	web
browser.	We	can	run	this	program	from	any	directory	and	serve	the	tree	as	a	static	file
server.	All	in	1	line	of	Go	code.

Building	Web	Apps	with	Go

10The	net/http	package



Creating	a	Basic	Web	App
Now	that	we	are	done	going	over	the	basics	of	HTTP,	let's	create	a	simple	but	useful	web
application	in	Go.

Pulling	from	our	fileserver	program	that	we	implemented	last	chapter,	we	will	implement	a
Markdown	generator	using	the		github.com/russross/blackfriday		package.

HTML	Form
For	starters,	we	will	need	a	basic	HTML	form	for	the	markdown	input:

<html>

		<head>

				<link	href="/css/bootstrap.min.css"	rel="stylesheet">

		</head>

		<body>

				<div	class="container">

						<div	class="page-title">

								<h1>Markdown	Generator</h1>

								<p	class="lead">Generate	your	markdown	with	Go</p>

								<hr	/>

						</div>

						<form	action="/markdown"	method="POST">

								<div	class="form-group">

										<textarea	class="form-control"	name="body"	cols="30"	rows="10"></textarea>

								</div>

								<div	class="form-group">

										<input	type="submit"	class="btn	btn-primary	pull-right"	/>

								</div>

						</form>

				</div>

				<script	src="/js/bootstrap.min.js"></script>

		</body>

</html>

Put	this	HTML	into	a	file	named		index.html		in	the	"public"	folder	of	our	application	and	the
	bootstrap.min.css		from	http://getbootstrap.com/	in	the	"public/css"	folder.	Notice	that	the
form	makes	an	HTTP	POST	to	the	"/markdown"	endpoint	of	our	application.	We	don't
actually	handle	that	route	right	now,	so	let's	add	it.

Building	Web	Apps	with	Go

11Creating	a	Basic	Web	App

http://getbootstrap.com/


The	"/markdown"	route
The	program	to	handle	the	'/markdown'	route	and	serve	the	public		index.html		file	looks	like
this:

package	main

import	(

				"net/http"

				"github.com/russross/blackfriday"

)

func	main()	{

				http.HandleFunc("/markdown",	GenerateMarkdown)

				http.Handle("/",	http.FileServer(http.Dir("public")))

				http.ListenAndServe(":8080",	nil)

}

func	GenerateMarkdown(rw	http.ResponseWriter,	r	*http.Request)	{

				markdown	:=	blackfriday.MarkdownCommon([]byte(r.FormValue("body")))

				rw.Write(markdown)

}

Let's	break	it	down	into	smaller	pieces	to	get	a	better	idea	of	what	is	going	on.

http.HandleFunc("/markdown",	GenerateMarkdown)

http.Handle("/",	http.FileServer(http.Dir("public")))

We	are	using	the		http.HandleFunc		and		http.Handle		methods	to	define	some	simple
routing	for	our	application.	It	is	important	to	note	that	calling		http.Handle		on	the	"/"	pattern
will	act	as	a	catch-all	route,	so	we	define	that	route	last.		http.FileServer		returns	an
	http.Handler		so	we	use		http.Handle		to	map	a	pattern	string	to	a	handler.	The	alternative
method,		http.HandleFunc	,	uses	an		http.HandlerFunc		instead	of	an		http.Handler	.	This
may	be	more	convenient,	to	think	of	handling	routes	via	a	function	instead	of	an	object.

func	GenerateMarkdown(rw	http.ResponseWriter,	r	*http.Request)	{

				markdown	:=	blackfriday.MarkdownCommon([]byte(r.FormValue("body")))

				rw.Write(markdown)

}

Our	GenerateMarkdown	function	implements	the	standard		http.HandlerFunc		interface	and
renders	HTML	from	a	form	field	containing	markdown-formatted	text.	In	this	case,	the
content	is	retrieved	with		r.FormValue("body")	.	It	is	very	common	to	get	input	from	the

Building	Web	Apps	with	Go

12Creating	a	Basic	Web	App



	http.Request		object	that	the		http.HandlerFunc		receives	as	an	argument.	Some	other
examples	of	input	are	the		r.Header	,		r.Body	,	and		r.URL		members.

We	finalize	the	request	by	writing	it	out	to	our		http.ResponseWriter	.	Notice	that	we	didn't
explicitly	send	a	response	code.	If	we	write	out	to	the	response	without	a	code,	the
	net/http		package	will	assume	that	the	response	is	a		200	OK	.	This	means	that	if
something	did	happen	to	go	wrong,	we	should	set	the	response	code	via	the
	rw.WriteHeader()		method.

http.ListenAndServe(":8080",	nil)

The	last	bit	of	this	program	starts	the	server,	we	pass		nil		as	our	handler,	which	assumes
that	the	HTTP	requests	will	be	handled	by	the		net/http		packages	default		http.ServeMux	,
which	is	configured	using		http.Handle		and		http.HandleFunc	,	respectively.

And	that	is	all	you	need	to	be	able	to	generate	markdown	as	a	service	in	Go.	It	is	a
surprisingly	small	amount	of	code	for	the	amount	of	heavy	lifting	it	does.	In	the	next	chapter
we	will	learn	how	to	deploy	this	application	to	the	web	using	Heroku.

Building	Web	Apps	with	Go

13Creating	a	Basic	Web	App



Deployment
Heroku	makes	deploying	applications	easy.	It	is	a	perfect	platform	for	small	to	medium	size
web	applications	that	are	willing	to	sacrifice	a	little	bit	of	flexibility	in	infrastructure	to	gain	a
fairly	pain-free	environment	for	deploying	and	maintaining	web	applications.

I	am	choosing	to	deploy	our	web	application	to	Heroku	for	the	sake	of	this	tutorial	because	in
my	experience	it	has	been	the	fastest	way	to	get	a	web	application	up	and	running	in	no
time.	Remember	that	the	focus	of	this	tutorial	is	how	to	build	web	applications	in	Go	and	not
getting	caught	up	in	all	of	the	distraction	of	provisioning,	configuring,	deploying,	and
maintaining	the	machines	that	our	Go	code	will	be	run	on.

Getting	setup
If	you	don't	already	have	a	Heroku	account,	sign	up	at	id.heroku.com/signup.	It's	quick,	easy
and	free.

Application	management	and	configuration	is	done	through	the	Heroku	toolbelt,	which	is	a
free	command	line	tool	maintained	by	Heroku.	We	will	be	using	it	to	create	our	application
on	Heroku.	You	can	get	it	from	toolbelt.heroku.com.

Changing	the	Code
To	make	sure	the	application	from	our	last	chapter	will	work	on	Heroku,	we	will	need	to	make
a	few	changes.	Heroku	gives	us	a		PORT		environment	variable	and	expects	our	web
application	to	bind	to	it.	Let's	start	by	importing	the	"os"	package	so	we	can	grab	that		PORT	
environment	variable:

import	(

				"net/http"

				"os"

				"github.com/russross/blackfriday"

)

Next,	we	need	to	grab	the		PORT		environment	variable,	check	if	it	is	set,	and	if	it	is	we	should
bind	to	that	instead	of	our	hardcoded	port	(8080).

Building	Web	Apps	with	Go

14Deployment

https://id.heroku.com/signup
https://toolbelt.heroku.com/


port	:=	os.Getenv("PORT")

if	port	==	""	{

		port	=	"8080"

}

Lastly,	we	want	to	bind	to	that	port	in	our		http.ListenAndServe		call:

http.ListenAndServe(":"+port,	nil)

The	final	code	should	look	like	this:

package	main

import	(

				"net/http"

				"os"

				"github.com/russross/blackfriday"

)

func	main()	{

				port	:=	os.Getenv("PORT")

				if	port	==	""	{

								port	=	"8080"

				}

				http.HandleFunc("/markdown",	GenerateMarkdown)

				http.Handle("/",	http.FileServer(http.Dir("public")))

				http.ListenAndServe(":"+port,	nil)

}

func	GenerateMarkdown(rw	http.ResponseWriter,	r	*http.Request)	{

				markdown	:=	blackfriday.MarkdownCommon([]byte(r.FormValue("body")))

				rw.Write(markdown)

}

Configuration
We	need	a	couple	small	configuration	files	to	tell	Heroku	how	it	should	run	our	application.
The	first	one	is	the		Procfile	,	which	allows	us	to	define	which	processes	should	be	run	for
our	application.	By	default,	Go	will	name	the	executable	after	the	containing	directory	of	your
main	package.	For	instance,	if	my	web	application	lived	in
	GOPATH/github.com/codegangsta/bwag/deployment	,	my		Procfile		will	look	like	this:

Building	Web	Apps	with	Go

15Deployment



web:	deployment

Specifically	to	run	Go	applications,	we	need	to	also	specify	a		.godir		file	to	tell	Heroku
which	dir	is	in	fact	our	package	directory.

deployment

Deployment
Once	all	these	things	in	place,	Heroku	makes	it	easy	to	deploy.

Initialize	the	project	as	a	Git	repository:

git	init

git	add	-A

git	commit	-m	"Initial	Commit"

Create	your	Heroku	application	(specifying	the	Go	buildpack):

heroku	create	-b	https://github.com/kr/heroku-buildpack-go.git

Push	it	to	Heroku	and	watch	your	application	be	deployed!

git	push	heroku	master

View	your	application	in	your	browser:

heroku	open

Building	Web	Apps	with	Go

16Deployment



URL	Routing
For	some	simple	applications,	the	default		http.ServeMux		can	take	you	pretty	far.	If	you	need
more	power	in	how	you	parse	URL	endpoints	and	route	them	to	the	proper	handler,	you	may
need	to	pull	in	a	third	party	routing	framework.	For	this	tutorial,	we	will	use	the	popular
	github.com/julienschmidt/httprouter		library	as	our	router.
	github.com/julienschmidt/httprouter		is	a	great	choice	for	a	router	as	it	is	a	very	simple
implementation	with	one	of	the	best	performance	benchmarks	out	of	all	the	third	party	Go
routers.

In	this	example,	we	will	create	some	routing	for	a	RESTful	resource	called	"posts".	Below	we
define	mechanisms	to	view	index,	show,	create,	update,	destroy,	and	edit	posts.

package	main

import	(

				"fmt"

				"net/http"

				"github.com/julienschmidt/httprouter"

)

func	main()	{

				r	:=	httprouter.New()

				r.GET("/",	HomeHandler)

				//	Posts	collection

				r.GET("/posts",	PostsIndexHandler)

				r.POST("/posts",	PostsCreateHandler)

				//	Posts	singular

				r.GET("/posts/:id",	PostShowHandler)

				r.PUT("/posts/:id",	PostUpdateHandler)

				r.GET("/posts/:id/edit",	PostEditHandler)

				fmt.Println("Starting	server	on	:8080")

				http.ListenAndServe(":8080",	r)

}

func	HomeHandler(rw	http.ResponseWriter,	r	*http.Request,	p	httprouter.Params)	{

				fmt.Fprintln(rw,	"Home")

}

func	PostsIndexHandler(rw	http.ResponseWriter,	r	*http.Request,	p	httprouter.Params)	{

				fmt.Fprintln(rw,	"posts	index")

}

Building	Web	Apps	with	Go

17URL	Routing



func	PostsCreateHandler(rw	http.ResponseWriter,	r	*http.Request,	p	httprouter.Params)	{

				fmt.Fprintln(rw,	"posts	create")

}

func	PostShowHandler(rw	http.ResponseWriter,	r	*http.Request,	p	httprouter.Params)	{

				id	:=	p.ByName("id")

				fmt.Fprintln(rw,	"showing	post",	id)

}

func	PostUpdateHandler(rw	http.ResponseWriter,	r	*http.Request,	p	httprouter.Params)	{

				fmt.Fprintln(rw,	"post	update")

}

func	PostDeleteHandler(rw	http.ResponseWriter,	r	*http.Request,	p	httprouter.Params)	{

				fmt.Fprintln(rw,	"post	delete")

}

func	PostEditHandler(rw	http.ResponseWriter,	r	*http.Request,	p	httprouter.Params)	{

				fmt.Fprintln(rw,	"post	edit")

}

Exercises
1.	 Explore	the	documentation	for		github.com/julienschmidt/httprouter	.
2.	 Find	out	how	well		github.com/julienschmidt/httprouter		plays	nicely	with	existing

	http.Handler	s	like		http.FileServer	
3.	 	httprouter		has	a	very	simple	interface.	Explore	what	kind	of	abstractions	can	be	built

on	top	of	this	fast	router	to	make	building	things	like	RESTful	routing	easier.

Building	Web	Apps	with	Go

18URL	Routing



Middleware
If	you	have	some	code	that	needs	to	be	run	for	every	request,	regardless	of	the	route	that	it
will	eventually	end	up	invoking,	you	need	some	way	to	stack		http.Handlers		on	top	of	each
other	and	run	them	in	sequence.	This	problem	is	solved	elegantly	through	middleware
packages.	Negroni	is	a	popular	middleware	package	that	makes	building	and	stacking
middleware	very	easy	while	keeping	the	composable	nature	of	the	Go	web	ecosystem	intact.

Negroni	comes	with	some	default	middleware	such	as	Logging,	Error	Recovery,	and	Static
file	serving.	So	out	of	the	box	Negroni	will	provide	you	with	a	lot	of	value	without	a	lot	of
overhead.

The	example	below	shows	how	to	use	a	Negroni	stack	with	the	built	in	middleware	and	how
to	create	your	own	custom	middleware.

Building	Web	Apps	with	Go

19Middleware



package	main

import	(

				"log"

				"net/http"

				"github.com/codegangsta/negroni"

)

func	main()	{

				//	Middleware	stack

				n	:=	negroni.New(

								negroni.NewRecovery(),

								negroni.HandlerFunc(MyMiddleware),

								negroni.NewLogger(),

								negroni.NewStatic(http.Dir("public")),

				)

				n.Run(":8080")

}

func	MyMiddleware(rw	http.ResponseWriter,	r	*http.Request,	next	http.HandlerFunc)	{

				log.Println("Logging	on	the	way	there...")

				if	r.URL.Query().Get("password")	==	"secret123"	{

								next(rw,	r)

				}	else	{

								http.Error(rw,	"Not	Authorized",	401)

				}

				log.Println("Logging	on	the	way	back...")

}

Exercises
1.	 Think	of	some	cool	middleware	ideas	and	try	to	implement	them	using	Negroni.
2.	 Explore	how	Negroni	can	be	composed	with		github.com/gorilla/mux		using	the

	http.Handler		interface.
3.	 Play	with	creating	Negroni	stacks	for	certain	groups	of	routes	instead	of	the	entire

application.

Building	Web	Apps	with	Go

20Middleware



Rendering
Rendering	is	the	process	of	taking	data	from	your	application	or	database	and	presenting	it
for	the	client.	The	client	can	be	a	browser	that	renders	HTML,	or	it	can	be	another
application	that	consumes	JSON	as	its	serialization	format.	In	this	chapter	we	will	learn	how
to	render	both	of	these	formats	using	the	methods	that	Go	provides	for	us	in	the	standard
library.

Building	Web	Apps	with	Go

21Rendering



JSON
JSON	is	quickly	becoming	the	ubiquitous	serialization	format	for	web	APIs,	so	it	may	be	the
most	relevant	when	learning	how	to	build	web	apps	using	Go.	Fortunately,	Go	makes	it
simple	to	work	with	JSON	--	it	is	extremely	easy	to	turn	existing	Go	structs	into	JSON	using
the		encoding/json		package	from	the	standard	library.

package	main

import	(

				"encoding/json"

				"net/http"

)

type	Book	struct	{

				Title		string	`json:"title"`

				Author	string	`json:"author"`

}

func	main()	{

				http.HandleFunc("/",	ShowBooks)

				http.ListenAndServe(":8080",	nil)

}

func	ShowBooks(w	http.ResponseWriter,	r	*http.Request)	{

				book	:=	Book{"Building	Web	Apps	with	Go",	"Jeremy	Saenz"}

				js,	err	:=	json.Marshal(book)

				if	err	!=	nil	{

								http.Error(w,	err.Error(),	http.StatusInternalServerError)

								return

				}

				w.Header().Set("Content-Type",	"application/json")

				w.Write(js)

}

Exercises
1.	 Read	through	the	JSON	API	docs	and	find	out	how	to	rename	and	ignore	fields	for

JSON	serialization.
2.	 Instead	of	using	the		json.Marshal		method,	try	using	the		json.Encoder		API.
3.	 Figure	our	how	to	pretty	print	JSON	with	the		encoding/json		package.

Building	Web	Apps	with	Go

22JSON



HTML	Templates
Serving	HTML	is	an	important	job	for	some	web	applications.	Go	has	one	of	my	favorite
templating	languages	to	date.	Not	for	its	features,	but	for	its	simplicity	and	out	of	the	box
security.	Rendering	HTML	templates	is	almost	as	easy	as	rendering	JSON	using	the
'html/template'	package	from	the	standard	library.	Here	is	what	the	source	code	for	rendering
HTML	templates	looks	like:

package	main

import	(

				"html/template"

				"net/http"

				"path"

)

type	Book	struct	{

				Title		string

				Author	string

}

func	main()	{

				http.HandleFunc("/",	ShowBooks)

				http.ListenAndServe(":8080",	nil)

}

func	ShowBooks(w	http.ResponseWriter,	r	*http.Request)	{

				book	:=	Book{"Building	Web	Apps	with	Go",	"Jeremy	Saenz"}

				fp	:=	path.Join("templates",	"index.html")

				tmpl,	err	:=	template.ParseFiles(fp)

				if	err	!=	nil	{

								http.Error(w,	err.Error(),	http.StatusInternalServerError)

								return

				}

				if	err	:=	tmpl.Execute(w,	book);	err	!=	nil	{

								http.Error(w,	err.Error(),	http.StatusInternalServerError)

				}

}

This	is	the	following	template	we	will	be	using.	It	should	be	placed	in	a
	templates/index.html		file	in	the	directory	your	program	is	run	from:

Building	Web	Apps	with	Go

23HTML	Templates



<html>

		<h1>{{	.Title	}}</h1>

		<h3>by	{{	.Author	}}</h3>

</html>

Exercises
1.	 Look	through	the	docs	for		text/template		and		html/template		package.	Play	with	the

templating	language	a	bit	to	get	a	feel	for	its	goals,	strengths,	and	weaknesses.
2.	 In	the	example	we	parse	the	files	on	every	request,	which	can	be	a	lot	of	performance

overhead.	Experiment	with	parsing	the	files	at	the	beginning	of	your	program	and
executing	them	in	your		http.Handler		(hint:	make	use	of	the		Copy()		method	on
	html.Template	).

3.	 Experiment	with	parsing	and	using	multiple	templates.

Building	Web	Apps	with	Go

24HTML	Templates



Using	the	render	package
If	you	want	rendering	JSON	and	HTML	to	be	even	simpler,	there	is	the
	github.com/unrolled/render		package.	This	package	was	inspired	by	the		martini-
contrib/render		package	and	is	my	goto	when	it	comes	to	rendering	data	for	presentation	in
my	web	applications.

package	main

import	(

				"net/http"

				"gopkg.in/unrolled/render.v1"

)

func	main()	{

				r	:=	render.New(render.Options{})

				mux	:=	http.NewServeMux()

				mux.HandleFunc("/",	func(w	http.ResponseWriter,	req	*http.Request)	{

								w.Write([]byte("Welcome,	visit	sub	pages	now."))

				})

				mux.HandleFunc("/data",	func(w	http.ResponseWriter,	req	*http.Request)	{

								r.Data(w,	http.StatusOK,	[]byte("Some	binary	data	here."))

				})

				mux.HandleFunc("/json",	func(w	http.ResponseWriter,	req	*http.Request)	{

								r.JSON(w,	http.StatusOK,	map[string]string{"hello":	"json"})

				})

				mux.HandleFunc("/html",	func(w	http.ResponseWriter,	req	*http.Request)	{

								//	Assumes	you	have	a	template	in	./templates	called	"example.tmpl"

								//	$	mkdir	-p	templates	&&	echo	"<h1>Hello	{{.}}.</h1>"	>	templates/example.tmpl

								r.HTML(w,	http.StatusOK,	"example",	nil)

				})

				http.ListenAndServe(":8080",	mux)

}

Exercises
1.	 Have	fun	playing	with	all	of	the	options	available	when	calling		render.New()	
2.	 Try	using	the		.yield		helper	function	(with	the	curly	braces)	and	a	layout	with	HTML

Building	Web	Apps	with	Go

25Using	The	render	package



templates.

Building	Web	Apps	with	Go

26Using	The	render	package



Testing
Testing	is	an	important	part	of	any	application.	There	are	two	approaches	we	can	take	to
testing	Go	web	applications.	The	first	approach	is	a	unit-test	style	approach.	The	other	is
more	of	an	end-to-end	approach.	In	this	chapter	we'll	cover	both	approaches.

Building	Web	Apps	with	Go

27Testing



Unit	Testing
Unit	testing	allows	us	to	test	a		http.HandlerFunc		directly	without	running	any	middleware,
routers,	or	any	other	type	of	code	that	might	otherwise	wrap	the	function.

package	main

import	(

				"fmt"

				"net/http"

)

func	HelloWorld(res	http.ResponseWriter,	req	*http.Request)	{

				fmt.Fprint(res,	"Hello	World")

}

func	main()	{

				http.HandleFunc("/",	HelloWorld)

				http.ListenAndServe(":3000",	nil)

}

This	is	the	test	file.	It	should	be	placed	in	the	same	directory	as	your	application	and	name
	main_test.go	.

Building	Web	Apps	with	Go

28Unit	Testing



package	main

import	(

				"net/http"

				"net/http/httptest"

				"testing"

)

func	Test_HelloWorld(t	*testing.T)	{

				req,	err	:=	http.NewRequest("GET",	"http://example.com/foo",	nil)

				if	err	!=	nil	{

								t.Fatal(err)

				}

				res	:=	httptest.NewRecorder()

				HelloWorld(res,	req)

				exp	:=	"Hello	World"

				act	:=	res.Body.String()

				if	exp	!=	act	{

								t.Fatalf("Expected	%s	gog	%s",	exp,	act)

				}

}

Exercises
1.	 Change	the	output	of		HelloWorld		to	print	a	parameter	and	then	test	that	the	parameter

is	rendered.
2.	 Create	a	POST	request	and	test	that	the	request	is	properly	handled.

Building	Web	Apps	with	Go

29Unit	Testing



End	To	End	Testing
End	to	end	allows	us	to	test	applications	through	the	whole	request	cycle.	Where	unit	testing
is	meant	to	just	test	a	particular	function,	end	to	end	tests	will	run	the	middleware,	router,
and	other	that	a	request	my	pass	through.

package	main

import	(

				"fmt"

				"net/http"

				"github.com/codegangsta/negroni"

				"github.com/julienschmidt/httprouter"

)

func	HelloWorld(res	http.ResponseWriter,	req	*http.Request,	p	httprouter.Params)	{

				fmt.Fprint(res,	"Hello	World")

}

func	App()	http.Handler	{

				n	:=	negroni.Classic()

				m	:=	func(res	http.ResponseWriter,	req	*http.Request,	next	http.HandlerFunc)	{

								fmt.Fprint(res,	"Before...")

								next(res,	req)

								fmt.Fprint(res,	"...After")

				}

				n.Use(negroni.HandlerFunc(m))

				r	:=	httprouter.New()

				r.GET("/",	HelloWorld)

				n.UseHandler(r)

				return	n

}

func	main()	{

				http.ListenAndServe(":3000",	App())

}

This	is	the	test	file.	It	should	be	placed	in	the	same	directory	as	your	application	and	name
	main_test.go	.

Building	Web	Apps	with	Go

30End	to	End	Testing



package	main

import	(

				"io/ioutil"

				"net/http"

				"net/http/httptest"

				"testing"

)

func	Test_App(t	*testing.T)	{

				ts	:=	httptest.NewServer(App())

				defer	ts.Close()

				res,	err	:=	http.Get(ts.URL)

				if	err	!=	nil	{

								t.Fatal(err)

				}

				body,	err	:=	ioutil.ReadAll(res.Body)

				res.Body.Close()

				if	err	!=	nil	{

								t.Fatal(err)

				}

				exp	:=	"Before...Hello	World...After"

				if	exp	!=	string(body)	{

								t.Fatalf("Expected	%s	got	%s",	exp,	body)

				}

}

Exercises
1.	 Create	another	piece	of	middleware	that	mutates	the	status	of	the	request.
2.	 Create	a	POST	request	and	test	that	the	request	is	properly	handled.

Building	Web	Apps	with	Go

31End	to	End	Testing



Controllers
Controllers	are	a	fairly	familiar	topic	in	other	web	development	communities.	Since	most	web
developers	rally	around	the	mighty	net/http	interface,	not	many	controller	implementations
have	caught	on	strongly.	However,	there	is	great	benefit	in	using	a	controller	model.	It	allows
for	clean,	well	defined	abstractions	above	and	beyond	what	the	net/http	handler	interface
can	alone	provide.

Handler	Dependencies
In	this	example	we	will	experiment	with	building	our	own	controller	implementation	using
some	standard	features	in	Go.	But	first,	lets	start	with	the	problems	we	are	trying	to	solve.
Say	we	are	using	the		render		library	that	we	talked	about	in	previous	chapters:

var	Render	=	render.New(render.Options{})

If	we	want	our		http.Handler	s	to	be	able	access	our		render.Render		instance,	we	have	a
couple	options.

1.	Use	a	global	variable:	This	isn't	too	bad	for	small	programs,	but	when	the	program	gets
larger	it	quickly	becomes	a	maintenance	nightmare.

2.	Pass	the	variable	through	a	closure	to	the	http.Handler:	This	is	a	great	idea,	and	we
should	be	using	it	most	of	the	time.	The	implementation	ends	up	looking	like	this:

func	MyHandler(r	*render.Render)	http.Handler	{

		return	http.HandlerFunc(func(rw	http.ResponseWriter,	r	*http.Request)	{

				//	now	we	can	access	r

		})

}

Case	for	Controllers
When	your	program	grows	in	size,	you	will	start	to	notice	that	many	of	your		http.Handler	s
will	share	the	same	dependencies	and	you	will	have	a	lot	of	these	closurized		http.Handlers	
with	the	same	arguments.	The	way	I	like	to	clean	this	up	is	to	write	a	little	base	controller
implementation	that	affords	me	a	few	wins:

1.	 Allows	me	to	share	the	dependencies	across		http.Handler	s	that	have	similar	goals	or

Building	Web	Apps	with	Go

32Controllers



concepts.
2.	 Avoids	global	variables	and	functions	for	easy	testing/mocking.
3.	 Gives	me	a	more	centralized	and	Go-like	mechanism	for	handling	errors.
The	great	part	about	controllers	is	that	it	gives	us	all	these	things	without	importing	an
external	package!	Most	of	this	functionality	comes	from	clever	use	of	the	Go	feature	set,
namely	Go	structs	and	embedding.	Let's	take	a	look	at	the	implementation.

package	main

import	"net/http"

//	Action	defines	a	standard	function	signature	for	us	to	use	when	creating

//	controller	actions.	A	controller	action	is	basically	just	a	method	attached	to

//	a	controller.

type	Action	func(rw	http.ResponseWriter,	r	*http.Request)	error

//	This	is	our	Base	Controller

type	AppController	struct{}

//	The	action	function	helps	with	error	handling	in	a	controller

func	(c	*AppController)	Action(a	Action)	http.Handler	{

				return	http.HandlerFunc(func(rw	http.ResponseWriter,	r	*http.Request)	{

								if	err	:=	a(rw,	r);	err	!=	nil	{

												http.Error(rw,	err.Error(),	500)

								}

				})

}

Thats	it!	That	is	all	the	implementation	that	we	need	to	have	the	power	of	controllers	at	our
fingertips.	All	we	have	left	to	do	is	implement	an	example	controller:

Building	Web	Apps	with	Go

33Controllers



package	main

import	(

				"net/http"

				"gopkg.in/unrolled/render.v1"

)

type	MyController	struct	{

				AppController

				*render.Render

}

func	(c	*MyController)	Index(rw	http.ResponseWriter,	r	*http.Request)	error	{

				c.JSON(rw,	200,	map[string]string{"Hello":	"JSON"})

				return	nil

}

func	main()	{

				c	:=	&MyController{Render:	render.New(render.Options{})}

				http.ListenAndServe(":8080",	c.Action(c.Index))

}

Exercises
1.	 Extend		MyController		to	have	multiple	actions	for	different	routes	in	your	application.
2.	 Play	with	more	controller	implementations,	get	creative.
3.	 Override	the		Action		method	on		MyController		to	render	a	error	HTML	page.

Building	Web	Apps	with	Go

34Controllers



Databases
One	of	the	most	asked	questions	I	get	about	web	development	in	Go	is	how	to	connect	to	a
SQL	database.	Thankfully,	Go	has	a	fantastic	SQL	package	in	the	standard	library	that
allows	us	to	use	a	whole	slew	of	drivers	for	different	SQL	databases.	In	this	example	we	will
connect	to	a	SQLite	database,	but	the	syntax	(minus	some	small	SQL	semantics)	is	the
same	for	a	MySQL	or	PostgreSQL	database.

Building	Web	Apps	with	Go

35Databases



package	main

import	(

				"database/sql"

				"fmt"

				"log"

				"net/http"

				_	"github.com/mattn/go-sqlite3"

)

func	main()	{

				db	:=	NewDB()

				log.Println("Listening	on	:8080")

				http.ListenAndServe(":8080",	ShowBooks(db))

}

func	ShowBooks(db	*sql.DB)	http.Handler	{

				return	http.HandlerFunc(func(rw	http.ResponseWriter,	r	*http.Request)	{

								var	title,	author	string

								err	:=	db.QueryRow("select	title,	author	from	books").Scan(&title,	&author)

								if	err	!=	nil	{

												panic(err)

								}

								fmt.Fprintf(rw,	"The	first	book	is	'%s'	by	'%s'",	title,	author)

				})

}

func	NewDB()	*sql.DB	{

				db,	err	:=	sql.Open("sqlite3",	"example.sqlite")

				if	err	!=	nil	{

								panic(err)

				}

				_,	err	=	db.Exec("create	table	if	not	exists	books(title	text,	author	text)")

				if	err	!=	nil	{

								panic(err)

				}

				return	db

}

Exercises
1.	 Make	use	of	the		Query		function	on	our		sql.DB		instance	to	extract	a	collection	of	rows

and	map	them	to	structs.
2.	 Add	the	ability	to	insert	new	records	into	our	database	by	using	an	HTML	form.

Building	Web	Apps	with	Go

36Databases



3.	 	go	get	github.com/jmoiron/sqlx		and	observe	the	improvements	made	over	the	existing
database/sql	package	in	the	standard	library.

Building	Web	Apps	with	Go

37Databases



Tips	and	Tricks

Wrap	a	http.HandlerFunc	closure
Sometimes	you	want	to	pass	data	to	a	http.HandlerFunc	on	initialization.	This	can	easily	be
done	by	creating	a	closure	of	the		http.HandlerFunc	:

func	MyHandler(database	*sql.DB)	http.Handler	{

		return	http.HandlerFunc(func(rw	http.ResponseWriter,	r	*http.Request)	{

				//	you	now	have	access	to	the	*sql.DB	here

		})

}

Using		gorilla/context		for	request-specific
data
It	is	pretty	often	that	we	need	to	store	and	retrieve	data	that	is	specific	to	the	current	HTTP
request.	Use		gorilla/context		to	map	values	and	retrieve	them	later.	It	contains	a	global
mutex	on	a	map	of	request	objects.

func	MyHandler(w	http.ResponseWriter,	r	*http.Request)	{

				val	:=	context.Get(r,	"myKey")

				//	returns	("bar",	true)

				val,	ok	:=	context.GetOk(r,	"myKey")

				//	...

}

Building	Web	Apps	with	Go

38Tips	and	Tricks



Moving	Forward
You've	done	it!	You	have	gotten	a	taste	of	Go	web	development	tools	and	libraries.	At	the
time	of	this	writing,	this	book	is	still	in	flux.	This	section	is	reserved	for	more	Go	web
resources	to	continue	your	learning.

Building	Web	Apps	with	Go

39Moving	Forward


	Introduction
	Go Makes Things Simple
	The net/http package
	Creating a Basic Web App
	Deployment
	URL Routing
	Middleware
	Rendering
	JSON
	HTML Templates
	Using The render package

	Testing
	Unit Testing
	End to End Testing

	Controllers
	Databases
	Tips and Tricks
	Moving Forward

